China Professional Custom ABS PC PP Plastic Molded Injection Parts Molding

Product Description

 

Product Description

 

Plastic injection molds and mould manufacturer

1-Start from part design analysis

2-Mold design drawing and DFM report available so you can see how is the mold going to be before mold making
3-If product is complex,moldflow report will be present as well
4-In house mold making shop ensure you mold quality under well control.
5-Normally it takes 15-25 working days to make mold,precise time depends on part design

 

Item Plastic injection moulding parts Plastic material ABS,PP,Nylon,PC or any other material as you need
Type of enterprise Professional manufacturer of injection molds and injection molding parts Service
 
OEM,Design based on your idea or Make mold and produce based on your drawing
Design software Solidworks, Pro-E, UG, CAD, CHINAMFG etc. Drawing format Step, Igs, PDF, CAD etc.
Produce Size
 
From small to big, based on your drawing or sample Product weight
 
1g-10kgs
MOQ 100PCS Production ability 10,000pcs/day
Assembly & Test Professional assembly factory with 6 assembly lines Package
 
Standard carton, pallet or customized package
Payment details T/T, L/C, D/A, D/P, Western Union, MoneyGram, Veem, Paypal etc Delivery time For mold & samples: 3-4 weeks.
For mass production: 15 workdays
Shipping way By Courier DHL, Fedex, TNT, UPS, EMS, By Sea or By Air Prototype 3D printing, CNC, Laser cutting etc

CEMAL Enginnering , professional plastic mold manufacturer in China, we focus on design and manufacturing plastic molds for

the Automotive, Home Appliances and other sectors.

Excited and ready to help support your project from the early stages of part development and tool design to fabrication and parts production via professional engineering, manufacturing, and project management, we are confident that our service level is second to none.

When you choose CEMAL- whether it’s for a single part, a small run or a multi-year contract – you’ll get the same attention to detail, the same problem-solving approach, the same quality solution. That’s the CEMAL promise.

Making our customers satisfying, Keeping our customer successful is the goal of CEMAL.

 

Why Choose CEMAL
Are you plHangZhou to get a supply of custom injection molds and probably do not have an idea of which Company is likely to offer effective products? If yes, then this article will be a perfect guide for you as it tries to highlight various reasons as to why you should choose Loxin mold as your supplier in injection molds. There are thousands of injection mold manufactures in China and therefore, determining the ideal company to partner with can quite be difficult. Not all factories offer genuine products or even provide the various services at affordable prices and there is thus the need to be careful on the company that you settle for. CEMAL mold has been in existence for more than 10 years now and has proved to be the leading producer of the custom injection mold through the exemplary services to the various customers. It would thus be a wise choice to consider us as your partner in supply of mold related products. Below are some of the reasons as to why you should consider our company

 

Highly experienced in production of mold
As mentioned earlier on, CEMAL mold has been in operation for more than 10 years and therefore has efficient knowledge in production of molds and the related services to out esteemed customers. We have transacted with various customers even in the European countries and have always given a positive feedback on our services. If you still don’t believe in us then you can refer from your country on the kind of services offered. We can even provide contacts of the various clients served if they allow us to do so.

Quality services are offered
Our engineers are highly skilled and you can be sure that they offer quality services that meet our customer’s satisfaction. Our main goal is to ensure that all clients are fully satisfied in the mold injection services offered and the company is always ready to even make any changes to meet the customer demands. Our managers are friendly and communicate directly to you if you need a supply of our products without involving any intermediaries. This is in contrast to other manufactures who hire sales ladies to promote the products as they pay them on a commission basis. This calls for more costs as the amount is later transferred to the price of the products
 

FAQ

1. Are you a trading company or a manufacturer?

We are a manufacturer as you can see our workshop as above.

 

2. What kind of trade terms can you do?

 

EX-WORKS,FOB,CIF,DDP DDU

 

3. What is your terms of payment?

 

50% Mold cost deposit,balance mold cost +50% production cost paid when samples confimed,Balance production cost paid against copy of B/L. We accept T/T

 

4. Do you support OEM ?

 

Yes, we can produce by technical drawings or samples.

 

5. How about your delivery time?

 

Generally, it take 20-30 working days ( 15-20days make mold, 5-10 days for mass production).

 

After-sales Service: 2 Years
Warranty: 2 Years
Type: Plastic Mould Parts
Material: Plastic, ABS,PP,PC,PA,PMMA,PS,POM etc.
Application: Electronic, Hardware, Machinery, Daily Use, Furniture, Household Applicances, Car
Certification: ISO9001, SGS
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

What is the role of design software and CAD/CAM technology in optimizing injection molded parts?

Design software and CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) technology play a crucial role in optimizing injection molded parts. They provide powerful tools and capabilities that enable designers and engineers to improve the efficiency, functionality, and quality of the parts. Here’s a detailed explanation of the role of design software and CAD/CAM technology in optimizing injection molded parts:

1. Design Visualization and Validation:

Design software and CAD tools allow designers to create 3D models of injection molded parts, providing a visual representation of the product before manufacturing. These tools enable designers to validate and optimize the part design by simulating its behavior under various conditions, such as stress analysis, fluid flow, or thermal performance. This visualization and validation process help identify potential issues or areas for improvement, leading to optimized part designs.

2. Design Optimization:

Design software and CAD/CAM technology provide powerful optimization tools that enable designers to refine and improve the performance of injection molded parts. These tools include features such as parametric modeling, shape optimization, and topology optimization. Parametric modeling allows for quick iteration and exploration of design variations, while shape and topology optimization algorithms help identify the most efficient and lightweight designs that meet the required functional and structural criteria.

3. Mold Design:

Design software and CAD/CAM technology are instrumental in the design of injection molds used to produce the molded parts. Mold design involves creating the 3D geometry of the mold components, such as the core, cavity, runner system, and cooling channels. CAD/CAM tools provide specialized features for mold design, including mold flow analysis, which simulates the injection molding process to optimize mold filling, cooling, and part ejection. This ensures the production of high-quality parts with minimal defects and cycle time.

4. Design for Manufacturability:

Design software and CAD/CAM technology facilitate the implementation of Design for Manufacturability (DFM) principles in the design process. DFM focuses on designing parts that are optimized for efficient and cost-effective manufacturing. CAD tools provide features that help identify and address potential manufacturing issues early in the design stage, such as draft angles, wall thickness variations, or parting line considerations. By considering manufacturing constraints during the design phase, injection molded parts can be optimized for improved manufacturability, reduced production costs, and shorter lead times.

5. Prototyping and Iterative Design:

Design software and CAD/CAM technology enable the rapid prototyping of injection molded parts through techniques such as 3D printing or CNC machining. This allows designers to physically test and evaluate the functionality, fit, and aesthetics of the parts before committing to mass production. CAD/CAM tools support iterative design processes by facilitating quick modifications and adjustments based on prototyping feedback, resulting in optimized part designs and reduced development cycles.

6. Collaboration and Communication:

Design software and CAD/CAM technology provide a platform for collaboration and communication among designers, engineers, and other stakeholders involved in the development of injection molded parts. These tools allow for easy sharing, reviewing, and commenting on designs, ensuring effective collaboration and streamlining the decision-making process. By facilitating clear communication and feedback exchange, design software and CAD/CAM technology contribute to optimized part designs and efficient development workflows.

7. Documentation and Manufacturing Instructions:

Design software and CAD/CAM technology assist in generating comprehensive documentation and manufacturing instructions for the production of injection molded parts. These tools enable the creation of detailed drawings, specifications, and assembly instructions that guide the manufacturing process. Accurate and well-documented designs help ensure consistency, quality, and repeatability in the production of injection molded parts.

Overall, design software and CAD/CAM technology are instrumental in optimizing injection molded parts. They enable designers and engineers to visualize, validate, optimize, and communicate designs, leading to improved part performance, manufacturability, and overall quality.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China Professional Custom ABS PC PP Plastic Molded Injection Parts Molding  China Professional Custom ABS PC PP Plastic Molded Injection Parts Molding
editor by CX 2023-11-24